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Summary Abstract

The goal of this program was the development and use of models of

femtosecond photoconductive experiments as probes of hot carrier transport

in semiconductors. Prototype experiments were being carried out in a

companion effort directed by Dr. Gerard Mourou at the University of

Rochester, Rochester New York. The Arizona State University modeling effort

was directed at several main components to the modeling of such experiments.

One must first model the generation of electron-hole pairs inside a

semiconductor as the result of the incidence of a femtosecond optical pulse.

Then one must model the processes by which the resulting current transient

is developed. Lastly, the conversion of the current transient into a

voltage wave transmitted down a transmission line must be understood. It is

this voltage wave that is directly measured in the experiments of interest.

Successful models of all three components were developed.

Statement of Work

In 1972 Ruch [1] suggested that electron drift velocities in submicron

FETs could substantially exceed the expected steady-state value and that

this could lead to improvements in the device performance. Since that time

hundreds of papers have been presented which modeled such high velocities

but very few and perhaps no clear unambiguous experimental studies of such

transport transients have been presented. This situation arises from the



very short picosecond and sub-picosecond time scales required for such

studies. In the 1980's advances in electro-optics presented us with such

experimental opportunities. During the reporting period we worked

cooperatively with an experimental group, directed by Dr. Gerard Mourou, at

the Laboratory for Laser Energetics of the University of Rochester, in an

effort at using subpicosecond photoconductive experiments as probes of

subpicosecond hot carrier transport in semiconductors. Both efforts have

been supported through grants from the Air Force Office of Scientific

Research, with the Arizona State University effort under award number AFOSR-

84-0290.

In these experiments femtosecond laser pulses are used to suddenly turn

on a photoconductive switch. This in turn triggers a voltage wave which is

transmitted along a microstripline. By using a second delayed pulse it is

possible to electro-optically sample the temporal behavior of this wave.

The rise-time can be measured with subpicosecond resolution and it appears

that changes in the risetime with bias as small as 0.025 picoseconds can be

measured. Both portions of the experiment are done on a subpicosecond scale

thus making it the first direct probe of subpicosecond current transients in

semiconductors. It differs from the vast majority of optical experiments in

that information directly pertinent to the carrier momentum is collected

whereas spectroscopic techniques tend to probe only carrier energy.

Unlike the situation envisioned by Ruch, where an electric

field is suddenly applied to already generated carriers, here we

photogenerate carriers in an already extant field. Early variations on this

have been reported by Mourou et et al. 121 as an early result of this



program, with a similar experiment being reported nearly simultaneously by

Hammond [3]. In both experiments a gap was left in a transmission line on

top of a semi-insulating GaAs substrate. The pump pulse was focused on the

gap and as the photocurrent in the gap evolved a time varying voltage wave

was sent down the transmission line. The analysis of Auston (41 was used in

both experiments to explain why a photoconductive overshoot should produce a

transmission line overshoot. The two experiments both used 620 nn!

wavelength pumps and differed primarily in the temporal resolution of the

measurement of the voltage wave. Hammond used an ion-bombarded second gap

as a high speed photoconductive sampler while Mourou et al. abutted an

electro-optic sampling crystal against their sample, extended the

transmission line onto this sampling crystal and used a second pulse to

electro-optically sample [5] the voltage wave. The temporal resolution of

Hammond was about 6 ps. which complicated his interpretation. However his

results were consistent with the general idea of having no overshoot at very

low fields, a temporally extended overshoot (lasting several picoseconds) at

medium fields and a temporally sharp overshoot at high fields. Mourou et

al. had temporal resolution of about 0.5 ps. and clearly saw an voltage

overshoot very similar to the velocity overshoots of Ruch.

There are important complications in analyzing both of these

experiments. First, in both cases there is an impedance discontinuity

between the photoconductive gap and the sampler. The second is that it is

unlikely that good ohmic contacts and uniform fields were attained in either

'I



system. The analysis was additionally complicated by the use of semi-

insulating GaAs. While it is clear that a photoconductive overshoot

occurred it cannot be unambiguously associated with a velocity overshoot.

All of these complications were eased during the latter portions of

this program when the experimental group studied switches made of high

quality epitaxially grown material (6,7] and utilized an improved electro-

optic sampling geometry 18]. The resulting data clearly showed a voltage

overshoot whose timescales and bias dependency were those expected if a

transport induced velocity overshoot was present in the photocurrent.

However, complications yet remain in the analysis of this data and we

therefore cannot yet claim to have seen a velocity overshoot.

There are three main steps which must be performed in the development

of a model of this experiment. First, we must accurately model the

processes by which the laser pulse is converted into electron-hole pairs

inside the gap. Secondly we must model the ensuing transport transients and

their conversion into a current transient seen at the gap terminals.

Lastly, we then must model the process by which this current transient is

represented as a voltage wave traveling down a microstrip line as it is this

wave that is sampled in electro-optic experiments of this sort. Once the

models are developed they then are to be used in conjunction with actual

experiments in probes of our understanding of carrier transport on the

subpicosecond scale. The goal of the Arizona State University effort was

the development of models for all three of these steps.

Status of Research



During the first portion of the first year our efforts centered on the

transformation of optical pulse data into a set of electron-hole pair

generation events which are distributed over the transmission line gap in

both space and time. As the transport model to be used in the second step

is a Monte Carlo model, we chose to use Monte Carlo techniques for this

portion as well. An ensemble of incident photons is chosen which represents

both the spectral and temporal distribution of the pulse by applying the

same rejection techniques commonly used to model the distribution of

scattering angles in various scattering events in transport Monte Carlo

studies. The location in the gap along the surface is similarly selected by

using a description of the pulse shape function, most generally a Gaussian

function. The penetration depth into the sample can be selected by using

the photon wavelength to select an appropriate optical absorption

coefficient. The penetration depth then is an exponentially distributed

function with this parameter serving as the mean penetration depth. This

problem is identical with the statistical distribution of free flight times

between scattering events in transport studies and the same techniques were

used here to solve the optical penetration problem. In later efforts we

extended these models to systems in which the conduction band model

consisted of a three valley model while three valence bands (heavy hole,

light hole and split-off bands) weie used. In the final stages of the

effort, the role of optical polarization in selecting carrier k-vectors was

studied.

The simplest approach to understanding the potential for using such

experiments as that of Hammond or Mourou et al. for studying transient



carrier transport is to perform a Monte Carlo study. A set of valence bands

are assumed and carriers are photogenerated out of these bands into the

conduction bands by photons of a specified wavelength. A spatially uniform

field is assumed and one then studies the transient response of the

photogenerated electrons in this field. Early results of this sort

generated some controversy. It was argued on the basis of such Monte Carlo

modeling (91 that no velocity overshoot could be produced using these

wavelengths. We later however showed that within the range to which the

parameters used in such models are established, it cannot be argued that no

overshoot occurs [7]. This was the first time the role of parameter

variations had been assessed in terms of these high speed photoconductive

switching experiments.

The earliest result of our modeling effort is a previously unnoticed

wavelength dependency in the initial rise of the photocurrent. We have

called this a Jone-Rees effect [10] because it had already been labeled as

such in a related situation faced in Gunn diode physics. It occurs whenever

carriers are introduced (either by intervalley scattering in a Gunn diode or

by photogeneration as occurs here) near the energy threshold for intervalley

scattering in the Gamma valley, provided an electric field is present ( as

is the case in both Gunn diodes and in photoconductivity). This should

create a bias dependency in "short wavelength" transient photoconductive

experiments but not in ones in which "long wavelengths" are used. Such a

wavelength dependent delay may have been experimentally seen [6,71.

The experiments generally operated in a high excitation regime. We

investigated the possibility that high excitation effects such as hot



phonons and electron-hole interactions might significantly alter the

predicted responses. Both of these possibilities were incorporated into tile

Monte Carlo code and we found that they do not significantly alter the

general features of the transient response 111,12]. There are changes in

this initial response associated with the polarization of the optical pump

pulse which while not dramatic may be observable as well 113]. At the

outset of this program we faced a difficulty in modeling the electron-hole

interaction. While there had been a great deal of effort at developing good

Monte Carlo models for electron transport in GaAs, holes had been neglected.

They however cannot be neglected here. The development of a good hole model

was the another main effort of the program which was successfully completed

[14]. The hole model cleatly shows that, as expected, hole currents should

be much smaller than electron currents in these systems. We additionally

noted that there was no data, either experimental or theoretical, on the

field dependency of the steady state hole coefficient. A side result of

this program was the development of such data [141.

In such experiments and in some of the associated work on device

characterization the ability to predict the time behavior of a circuit is

important. A quantitative comparison between theory and experiment calls in

particular for the ability to make such calculations for systems which do

not necessarily have a well-known equivalent circuit representation. We

have developed techniques where a linear two-port whose S-parameters are

well known in the frequency domain can be directly modeled in the time

domain without any intermediate assumed circuit being required. The

solution method allows us to solve for the time-domain response of a



switched transmission line. We incorporated a transient photoconductor into

this solution and applied it to the experiments of interest. This

photoconductor model consisted of a uniform-field Monte Carlo electron model

excited by a laser pulse as described above. The field varied in time in

accordance with the voltage produced across the gap by the transmission line

solution. A cold gap capacitance was included as well. The results

indicated that the circuits were capable of producing voltage waveforms that

closely resembled an underlying transient photocurrent waveform [7].

Even with such a model one asks about how an equivalent circuit can be

constructed for the subpicosecond risetimes exhibited experimentally. Late

in the program we began an interaction with Dr. Samir El-Ghazaly in which,

for the first time, a Monte Carlo code is coupled directly with a transient

numerical solution to Maxwell's equations in three dimensions. This now

provides us with models which can directly predict the actual electro-

optical shift in the polarization of the probe beam. 115-19].

There is one last problem faced in all such models. A Monte Carlo

model is a particle based model and all the particles in the model

eventually reach the edges of the region being simulated. In a model of

conductivity, at least some of the these edges must allow the carriers to

leave. If a process by which carriers are re-injected is not included, then

eventually one is simulating an empty box. This is particularly complicated

in a transient situation such as that of interest here as then it is not

true that the number of carriers present in the system is constant. We

therefore developed a novel extension of ideas by which charge is assigned



to carriers in a Monte Carlo model (for purposes of calculating fields)

which allows us to satisfy the appropriate conservation laws [201.

A brief summary of the overall program is that it resulted in the

development of the first subpicosecond experiments on photoconductivity;

clarified the role that transient hot carrier transport plays in such

experiments; showed that in principle they can be used to provide a time

domain experimental study of transient hot carrier transport; and resulted

in a particularly rich Monte Carlo code for relating the transient response

of a highly excited, photogenerated, bipolar plasma to the electromagnetic

field structures produced on a transmission line structure.
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Kevin Meyer, now at the Cavendish Laboratory of Cambridge University. His

interaction with Dr. Grondin is supported by a NATO travel grant at present.
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